The Reduced Plastid-Encoded Polymerase-Dependent Plastid Gene Expression Leads to the Delayed Greening of the Arabidopsis fln2 Mutant
نویسندگان
چکیده
In Arabidopsis leaf coloration mutants, the delayed greening phenomenon is common. Nonetheless, the mechanism remains largely elusive. Here, a delayed greening mutant fln2-4 of FLN2 (Fructokinase-Like Protein2) was studied. FLN2 is one component of Transcriptionally Active Chromosome (TAC) complex which is thought to contain the complete plastid-encoded polymerase (PEP). fln2-4 displayed albino phenotype on medium without sucrose. The PEP-dependent plastid gene expression and chloroplast development were inhibited in fln2-4. Besides interacting with thioredoxin z (TRX z), we identified that FLN2 interacted with another two members of TAC complex in yeast including its homologous protein FLN1 (Fructokinase-Like Protein1) and pTAC5. This indicates that FLN2 functions in regulation of PEP activity associated with these TAC components. fln2-4 exhibited delayed greening on sucrose-containing medium. Comparison of the PEP-dependent gene expression among two complete albino mutants (trx z and ptac14), two yellow mutants (ecb2-2 and ys1) and the fln2-4 showed that fln2-4 remains partial PEP activity. FLN2 and FLN1 are the target proteins of TRX z involved in affecting the PEP activity. Together with the data that FLN1 could interact with itself in yeast, FLN1 may form a homodimer to replace FLN1-FLN2 as the TRX z target in redox pathway for maintaining partial PEP activity in fln2-4. We proposed the partial PEP activity in the fln2 mutant allowed plastids to develop into fully functional chloroplasts when exogenous sucrose was supplied, and finally the mutants exhibited green phenotype.
منابع مشابه
The pentratricopeptide repeat protein DELAYED GREENING1 is involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis.
An Arabidopsis (Arabidopsis thaliana) mutant that exhibited a delayed greening phenotype (dg1) was isolated from a population of activation-tagged Arabidopsis lines. Young, inner leaves of dg1 mutants were initially very pale, but gradually greened and mature outer leaves, more than 3 weeks old, appeared similar to those of wild-type plants. Sequence and transcription analyses showed that DG1 e...
متن کاملInteraction of the pentatricopeptide-repeat protein DELAYED GREENING 1 with sigma factor SIG6 in the regulation of chloroplast gene expression in Arabidopsis cotyledons.
The pentatricopeptide-repeat (PPR) protein DELAYED GREENING 1 (DG1) has been shown to be involved in the regulation of early chloroplast development and chloroplast gene expression in Arabidopsis. To gain insight into the mode of DG1 action, we used a yeast two-hybrid screening approach and identified a partner, SIG6, which is a chloroplast sigma factor responsible for the transcription of plas...
متن کاملA new thioredoxin is involved in plastid gene expression.
Thioredoxins (TRXs), small proteins with disulfide reductase activity, are important players in redox regulation of protein function (the reversible modification of thiol groups that affects protein activity; reviewed in Buchanan and Balmer, 2005). First described as regulating chloroplast photosynthetic enzymes, TRXs are now known to participate in redox regulation in virtually all organisms a...
متن کاملDNA microarray analysis of plastid gene expression in an Arabidopsis mutant deficient in a plastid transcription factor sigma, SIG2.
The plastid genome of higher plants contains more than one hundred genes for photosynthesis, gene expression, and other processes. Plastid transcription is done by two types of RNA polymerase, PEP and NEP. PEP is a eubacteria-type RNA polymerase that is essential for chloroplast development. In Arabidopsis thaliana, six sigma factors (SIG1-6) are encoded by the nuclear genome, and postulated to...
متن کاملPlastid genome instability leads to reactive oxygen species production and plastid-to-nucleus retrograde signaling in Arabidopsis.
The plastid genome is highly conserved among plant species, suggesting that alterations of its structure would have dramatic impacts on plant fitness. Nevertheless, little is known about the direct consequences of plastid genome instability. Recently, it was reported that the plastid Whirly proteins WHY1 and WHY3 and a specialized type-I polymerase, POLIB, act as safeguards against plastid geno...
متن کامل